Generalized dihedral CI-groups

نویسندگان

چکیده

In this paper, we find a strong new restriction on the structure of CI-groups. We show that, if R is generalised dihedral group and CI-group, then for every odd prime p Sylow p-subgroup has order p, or 9. Consequently, any CI-group with quotient same restriction, that

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

Quotients of CI-Groups are CI-Groups

We show that a quotient group of a CI-group with respect to (di)graphs is a CI-group with respect to (di)graphs. In [1,2], Babai and Frankl provided strong constraints on which finite groups could be CI-groups with respect to graphs. As a tool in this program, they proved [1, Lemma 3.5] that a quotient group G/N of a CI-group G with respect to graphs is a CI-group with respect to graphs provide...

متن کامل

On Hamilton Circuits in Cayley Digraphs over Generalized Dihedral Groups

In this paper we prove that given a generalized dihedral group DH and a generating subset S, if S∩H 6= ∅ then the Cayley digraph → Cay(DH , S) is Hamiltonian. The proof we provide is via a recursive algorithm that produces a Hamilton circuit in the digraph.

متن کامل

Hamilton paths in Cayley graphs on generalized dihedral groups

We investigate the existence of Hamilton paths in connected Cayley graphs on generalized dihedral groups. In particular, we show that a connected Cayley graph of valency at least three on a generalized dihedral group, whose order is divisible by four, is Hamiltonconnected, unless it is bipartite, in which case it is Hamilton-laceable.

متن کامل

Isoperimetric Numbers of Cayley Graphs Arising from Generalized Dihedral Groups

Let n, x be positive integers satisfying 1 < x < n. Let Hn,x be a group admitting a presentation of the form 〈a, b | a = b = (ba) = 1〉. When x = 2 the group Hn,x is the familiar dihedral group, D2n. Groups of the form Hn,x will be referred to as generalized dihedral groups. It is possible to associate a cubic Cayley graph to each such group, and we consider the problem of finding the isoperimet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2022

ISSN: ['1855-3974', '1855-3966']

DOI: https://doi.org/10.26493/1855-3974.2443.02e